Noncommutative Tensor Triangular Geometry

Daniel K. Nakano

Department of Mathematics University of Georgia

General References

[Bal05] P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., 588, (2005), 149-168.

[BIK12] D.J. Benson, S. Iyengar, H. Krause, *Representations of finite groups: local cohomology and supports*, Oberwolfach Seminars, vol. 43, Birkhauser, 2012.

Foundational works due to Benson-Carlson-Rickard, BIK, BIK-Pevtsova, Hopkins, Neeman, and others.....

Specific References

[BKN17] B.D. Boe, D.K. Nakano, J.R. Kujawa, *Tensor triangular geometry for classical Lie superalgebras*, Advances in Math., 314, (2017), 228-277.

[BKN17] B.D. Boe, D.K. Nakano, J.R. Kujawa, *Tensor triangular geometry for quantum groups*, ArXiv:1702.01289.

[NVY19] D.K. Nakano, K.B. Vashaw, M.T. Yakimov, *Noncommutative tensor triangular geometry*, ArXiv: 1909.04304.

[NVY20] D.K. Nakano, K.B. Vashaw, M.T. Yakimov, *Noncommutative* tensor triangular geometry and the tensor product property for support maps, ArXiv:2008:09924

"Categories Have Hidden Geometry"

Monoidal Triangulated Categories

Definition

A monoidal triangulated category (M Δ C) is a triple (K, \otimes ,1) such that

- (i) K is a triangulated category,
- (ii) **K** has a monodial tensor product \otimes : **K** \times **K** \rightarrow **K** which is exact in each variable with unit object **1**.

Examples:

Example

Let A be a finite-dimensional Hopf algebra. Then

- (iii) $\mathbf{K}^c = \operatorname{stmod}(A)$ stable module category of finite-dimensional modules for A
- (iv) $\mathbf{K} = \mathsf{StMod}(A)$ stable module category for $\mathsf{Mod}(A)$.

Examples:

Example

Let A be a finite-dimensional Hopf algebra. Then

- (iii) $\mathbf{K}^c = \operatorname{stmod}(A)$ stable module category of finite-dimensional modules for A
- (iv) $\mathbf{K} = \mathsf{StMod}(A)$ stable module category for $\mathsf{Mod}(A)$.

Example

Let R be a commutative Noetherian ring. Let

- (i) $\mathbf{K}^c = D^b_{perf}(R)$ bounded derived category of finitely generated projective R-modules
- (ii) $\mathbf{K} = D(R)$ derived category of R-modules.

Then K^c and K are tensor triangulated categories.

Definition

(a) A (tensor) ideal in **K** is a triangulated subcategory **I** of **K** such that $M \otimes N \in \mathbf{I}$ and $N \otimes M \in \mathbf{I}$ for all $M \in \mathbf{I}$ and $N \in \mathbf{K}$.

Definition

- (a) A (tensor) ideal in **K** is a triangulated subcategory **I** of **K** such that $M \otimes N \in \mathbf{I}$ and $N \otimes M \in \mathbf{I}$ for all $M \in \mathbf{I}$ and $N \in \mathbf{K}$.
- (b) An ideal I is thick if $M_1 \oplus M_2 \in I$ then $M_j \in I$ for j = 1, 2.

Definition

- (a) A (tensor) ideal in **K** is a triangulated subcategory **I** of **K** such that $M \otimes N \in \mathbf{I}$ and $N \otimes M \in \mathbf{I}$ for all $M \in \mathbf{I}$ and $N \in \mathbf{K}$.
- (b) An ideal I is thick if $M_1 \oplus M_2 \in I$ then $M_j \in I$ for j = 1, 2.
- (c) A completely prime ideal P of K is a proper thick tensor ideal such that if $M \otimes N \in P$ then either $M \in P$ or $N \in P$.

Definition

- (a) A (tensor) ideal in **K** is a triangulated subcategory **I** of **K** such that $M \otimes N \in \mathbf{I}$ and $N \otimes M \in \mathbf{I}$ for all $M \in \mathbf{I}$ and $N \in \mathbf{K}$.
- (b) An ideal I is thick if $M_1 \oplus M_2 \in I$ then $M_j \in I$ for j = 1, 2.
- (c) A completely prime ideal P of K is a proper thick tensor ideal such that if $M \otimes N \in P$ then either $M \in P$ or $N \in P$.
- (d) [NEW] A prime ideal P of K is a proper thick tensor ideal such that $I \otimes J \subseteq P$ implies that $I \subseteq P$ or $J \subseteq P$ for all thick ideals I, J of K.

A Generalization of Paul Balmer's Categorical Spectrum

Definition

The Balmer spectrum is defined as

$$Spc(K) = \{P \subset K \mid P \text{ is a prime ideal}\}.$$

The topology on Spc(K) is given by closed sets of the form

$$Z(\mathcal{C}) = \{ \mathbf{P} \in \mathsf{Spc}(\mathbf{K}) \mid \mathcal{C} \cap \mathbf{P} = \emptyset \}$$

where C is a family of objects in K.

A Generalization of Paul Balmer's Categorical Spectrum

Definition

The Balmer spectrum is defined as

$$Spc(K) = \{P \subset K \mid P \text{ is a prime ideal}\}.$$

The topology on Spc(K) is given by closed sets of the form

$$Z(\mathcal{C}) = \{ \mathbf{P} \in \mathsf{Spc}(\mathbf{K}) \mid \mathcal{C} \cap \mathbf{P} = \varnothing \}$$

where C is a family of objects in K.

One can also define

$$\mathsf{CP\text{-}Spc}(\mathbf{K}) = \{\mathbf{P} \subset \mathbf{K} \mid \mathbf{P} \text{ is a completely prime ideal}\}.$$

$$CP$$
- $Spc(\mathbf{K}) \subseteq Spc(\mathbf{K})$.

Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case any closed set in X is the union of finitely many irreducible closed sets. We say that X is a Zariski space if in addition any irreducible closed set Y of X has a unique generic point (i.e., $y \in Y$ such that $Y = \overline{\{y\}}$).

Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case any closed set in X is the union of finitely many irreducible closed sets. We say that X is a Zariski space if in addition any irreducible closed set Y of X has a unique generic point (i.e., $y \in Y$ such that $Y = \overline{\{y\}}$).

Example

Let R is a commutative Noetherian ring.

- (1) $X = \operatorname{Spec}(R)$.
- (2) X = Proj(Spec(R)) := Proj(R) if R is graded.
- (3) $X = G\operatorname{-Proj}(R)$ if R is graded and G is an algebraic group.

Zariski Spaces: Notation

- (ii) \mathcal{X} be the collection of subsets of X.
- (ii) \mathcal{X}_{cl} be the collection of closed subsets of X.
- (iii) \mathcal{X}_{irr} be the set of irreducible closed sets.
- (iv) A subset W in X is *specialization closed* if and only if $W = \bigcup_{j \in J} W_j$ where W_j are closed sets.
- (v) \mathcal{X}_{sp} be the collection of all specialization closed subsets of X.

Support Data

Definition

A support data (resp. weak support data) is an assignment $\sigma : \mathbf{K} \to \mathcal{X}$ which satisfies the following six properties (for $M, M_i, N, Q \in \mathbf{K}$):

- (S1) $\sigma(0) = \varnothing$, $\sigma(1) = X$;
- (S2) $\sigma(\bigoplus_{i\in I} M_i) = \bigcup_{i\in I} \sigma(M_i)$ whenever $\bigoplus_{i\in I} M_i$ is an object of **K**;
- (S3) $\sigma(\Sigma M) = \sigma(M)$;
- (S4) for any distinguished triangle $M \to N \to Q \to \Sigma M$ we have

$$\sigma(N) \subseteq \sigma(M) \cup \sigma(Q)$$
;

- (S5) $\bigcup_{C \in \mathbf{K}} \sigma(M \otimes C \otimes N) = \sigma(M) \cap \sigma(N);$
- $(\mathsf{WS5}) \ \Phi_{\sigma}(\mathsf{I} \otimes \mathsf{J}) = \Phi_{\sigma}(\mathsf{I}) \cap \Phi_{\sigma}(\mathsf{J}), \ \mathsf{I} \ \mathsf{and} \ \mathsf{J} \ \mathsf{are} \ \mathsf{ideals} \ \mathsf{of} \ \mathsf{K} \colon \ \Phi_{\sigma}(\mathsf{I}) = \cup_{A \in \mathsf{I}} \sigma(A).$
 - (S6) $\sigma(M) = \sigma(M^*)$ for $M \in \mathbf{K}^c$ [the compact objects have a duality].

We will be interested in support data which satisfy an additional two properties:

- (S7) $\sigma(M) = \emptyset$ if and only if M = 0; (Faithfulness Property)
- (S8) for any $W \in \mathcal{X}_{cl}$ there exists an $M \in \mathbf{K}^c$ such that $\sigma(M) = W$ (Realization Property).

Classifying Thick Tensor Ideals and the Balmer Spectrum

Theorem (BKN16, Dell'Ambrogio, NVY19)

Let **K** be a compactly generated $M\Delta C$. Let X be a Zariski space and let $\sigma: \mathbf{K} \to \mathcal{X}$ be a weak support data satisfying the additional conditions (S7) and (S8) with $\sigma(\langle M \rangle) \in \mathcal{X}_{cl}$ for $M \in \mathbf{K}^c$. There is a pair of mutually inverse maps

$$\{ \textit{thick tensor ideals of } \mathbf{K}^{c} \} \ \mathop{\overset{\Phi_{\sigma}}{\rightleftarrows}}_{\Theta} \ \mathcal{X}_{\textit{sp}},$$

given by

$$\Phi_{\sigma}(\mathbf{I}) = \bigcup_{M \in \mathbf{I}} \sigma(M), \quad \Theta(W) = \mathbf{I}_W,$$

where $I_W = \{M \in \mathbf{K}^c \mid \sigma(M) \subseteq W\}$. Moreover, there is a homeomorphism

$$f: X \to \operatorname{Spc}(\mathbf{K}^c)$$
.

Recap

Finite Group Schemes [Symmetric MΔC]

Example

Let G be a finite group (scheme), $A := H^{\bullet}(G, k) = \operatorname{Ext}_{G}^{\bullet}(k, k)$ be the cohomology ring. Set $K^{c} = \operatorname{stmod}(G)$ and $X = \operatorname{Proj}(\operatorname{Spec}(A))$.

- (i) {thick \otimes -ideals of \mathbf{K}^c } are in one-to-correspondence with \mathcal{X}_{sp} .
- (ii) $Spc(\mathbf{K}^c) \cong Proj(Spec(A))$.

The (classifying) support data is given by

$$W(M) = \{ P \in \mathsf{Proj}(\mathsf{Spec}(A)) : \mathsf{Ext}^{\bullet}_G(M, M)_P \neq 0 \}.$$

Perfect Complexes [Symmetric $M\Delta C$]

Example

Let R be a commutative Noetherian ring, $\mathbf{K}^c = D^b_{perf}(R)$ and $X = \operatorname{Spec}(R)$. Then

- (i) {thick \otimes -ideals of \mathbf{K}^c } are in one-to-correspondence with \mathcal{X}_{sp} .
- (ii) $\operatorname{Spc}(\mathbf{K}^c) \cong \operatorname{Spec}(R)$.

The support data which gives this classification is

$$W(C_{\bullet}) = \{ P \in \operatorname{Spec}(R) : \operatorname{H}_*(C_{\bullet})_P \neq 0 \}.$$

Large Quantum Group [Symmetric M△C]

Theorem (BKN17)

Let G be a complex simple algebraic group over $\mathbb C$ with $\mathfrak g=\operatorname{Lie} G$. Assume that ζ is a primitive ℓ th root of unity where $\ell>h$. Let $\mathbf K=\operatorname{Stmod}(U_\zeta(\mathfrak g))$, $\mathbf K^c=\operatorname{stmod}(U_\zeta(\mathfrak g))$ and $X=G\operatorname{-Proj}(\mathbb C[\mathcal N])$. There exists a 1-1 correspondence

$$\{ \textit{thick tensor ideals of } \mathbf{K}^c \} \begin{tabular}{l} \Gamma \\ \rightleftharpoons \\ \Theta \end{tabular} \mathcal{X}_{\textit{sp}}.$$

Moreover, there is a homeomorphism

$$\mathsf{Spc}(\mathsf{stmod}(U_\zeta(\mathfrak{g}))) \cong G\text{-}\mathsf{Proj}(\mathbb{C}[\mathcal{N}]).$$

Finite-dimensional Hopf-algebras [General MΔC]

Theorem (NVY19)

(a) Let **K** be a compactly generated $M\Delta C$ and $\sigma: \mathbf{K} \to \mathcal{X}$ be a quasi support datum for a Zariski space X that satisfies the faithfulness and realization properties and the Assumption YY. Then the map

$$\Phi_{\sigma}: \{\textit{thick right ideals of } \mathbf{K}^{c}\}
ightarrow \mathcal{X}_{\textit{sp}}$$

is a bijection.

(b) Let A be a finite-dimensional Hopf algebra over a field k that satisfies the standard (Finite Generation) Assumption and the Assumption YY. Set $X = \text{Proj}(H^{\bullet}(A, k))$. The standard cohomological support $\sigma : \text{stmod}(A) \to \mathcal{X}_{cl}$ is a quasi support datum, and as a consequence, there is a bijection

$$\Phi_{\sigma}: \{ \textit{thick right ideals of} \ \mathsf{stmod}(A) \} \to \mathcal{X}_{\textit{sp}},$$

where stmod(A) is the stable (finite dimensional) module category of A.

Quantum Groups [Non-commutative $M\Delta C$]

Assumptions

Let Δ be an irreducible root system, and $\zeta \in \mathbb{C}$ be a primitive ℓ th root of unity.

- The integer ℓ is odd and greater than 1.
- If the root system Φ has type G_2 , then 3 does not divide ℓ .
- $\ell > h$ where h is the Coxeter number for Δ .

Quantum Groups for Borel Subalgebras

- Δ^+ be the positive roots of an irreducible root system Δ .
- X be the weight lattice
- Γ a \mathbb{Z} -lattice with $\mathbb{Z}\Delta \subseteq \Gamma \subseteq X$
- $\{\mu_1, \dots, \mu_n\}$ a \mathbb{Z} -basis for Γ

Quantum Groups for Borel Subalgebras

- Δ^+ be the positive roots of an irreducible root system Δ .
- X be the weight lattice
- Γ a \mathbb{Z} -lattice with $\mathbb{Z}\Delta \subseteq \Gamma \subseteq X$
- $\{\mu_1, \dots, \mu_n\}$ a \mathbb{Z} -basis for Γ

Construct $u_{\zeta,\Gamma}(\mathfrak{b}) = u_{\zeta}(\mathfrak{u}) \# u_{\zeta,\Gamma}(\mathfrak{t})$ as follows.

- $u_{\zeta}(\mathfrak{u})$ is the small quantum group for nilpotent radical of the Borel.
- $\bullet \ u_{\zeta,\Gamma}(\mathfrak{t})=\mathbb{C}[K_{\mu_1}^{\pm 1},\ldots,K_{\mu_n}^{\pm 1}]/(K_{\mu_i}^{\ell}-1,1\leq i\leq n)$
- $K_{\mu_i}E_{\beta}K_{\mu_i}^{-1}=\zeta^{\langle\beta,\mu_i\rangle}E_{\beta}$.
- The (non-cocommutative) coproduct on $u_{\zeta}(\mathfrak{u})$ is the standard one used for quantum groups. .

Classification of Thick Tensor Ideals

Theorem (NVY19, NVY20)

Let $\mathfrak{u}_{\zeta,\Gamma}(\mathfrak{b})$ be the small quantum group for the Borel subalgebra for an arbitrary finite dimensional complex simple Lie algebra. Assume that ℓ satisfies the Assumptions (in particular, $\ell > h$) and $\gcd(\ell, |\Gamma/\mathbb{Z}\Delta|) = 1$, which implies that $R \cong S(\mathfrak{u}^*)$, $X = \operatorname{Proj}(R)$.

- (a) For Φ and Θ as above, there exists a bijection between
 - $\{ thick \ tensor \ ideals \ of \ \mathsf{stmod}(u_{\zeta,\Gamma}(\mathfrak{b})) \} \ \stackrel{\Phi_W}{\underset{\Theta}{\longleftarrow}} \ \{ specialization \ closed \ sets \ of \ X \}$
- (b) Every thick right ideal of stmod($u_{\zeta,\Gamma}(\mathfrak{b})$) is two-sided.
- (c) There exists a homeomorphism $f : Proj(R) \to Spc(stmod(u_{\zeta,\Gamma}(\mathfrak{b})))$.

 We define the notion of quasi support data whose axioms involve a weaker form of the tensor product condition.

- We define the notion of quasi support data whose axioms involve a weaker form of the tensor product condition.
- To obtain an analogue of a result of Hopkins, a key assumption (Assumption YY) is identified that involves the projectivity of infinitely generated modules.

- We define the notion of quasi support data whose axioms involve a weaker form of the tensor product condition.
- To obtain an analogue of a result of Hopkins, a key assumption (Assumption YY) is identified that involves the projectivity of infinitely generated modules.
- The next step is to pass to a designated associated graded algebra, gr $u_{\zeta,\Gamma}(\mathfrak{b})$, for $u_{\zeta,\Gamma}(\mathfrak{b})$. It is in this category that we prove a version of the tensor product theorem.

- We define the notion of quasi support data whose axioms involve a weaker form of the tensor product condition.
- To obtain an analogue of a result of Hopkins, a key assumption (Assumption YY) is identified that involves the projectivity of infinitely generated modules.
- The next step is to pass to a designated associated graded algebra, gr $u_{\zeta,\Gamma}(\mathfrak{b})$, for $u_{\zeta,\Gamma}(\mathfrak{b})$. It is in this category that we prove a version of the tensor product theorem.
- A key ingredient involves the work of Benson, Erdmann, and Holloway to relate supports of modules in gr $u_{\zeta,\Gamma}(\mathfrak{b})$ to supports for a quantum complete intersection (with equal parameters) where the theory is better understood via rank varieties.

- We define the notion of quasi support data whose axioms involve a weaker form of the tensor product condition.
- To obtain an analogue of a result of Hopkins, a key assumption (Assumption YY) is identified that involves the projectivity of infinitely generated modules.
- The next step is to pass to a designated associated graded algebra, gr $u_{\zeta,\Gamma}(\mathfrak{b})$, for $u_{\zeta,\Gamma}(\mathfrak{b})$. It is in this category that we prove a version of the tensor product theorem.
- A key ingredient involves the work of Benson, Erdmann, and Holloway to relate supports of modules in gr $u_{\zeta,\Gamma}(\mathfrak{b})$ to supports for a quantum complete intersection (with equal parameters) where the theory is better understood via rank varieties.
- By carefully keeping track of the relationship between the support theories between $u_{\zeta,\Gamma}(\mathfrak{b})$ and gr $u_{\zeta,\Gamma}(\mathfrak{b})$ we can successfully verify the key assumption. Much of our analysis uses key facts in the local support theory as developed by Benson, Iyengar, and Krause.

Benson-Witherspoon Hopf Algebras [Non-cocommutative $M\Delta C$]

Benson and Witherspoon considered the stable module categories of Hopf algebras of the form

$$A := (k[G] \# kH)^*,$$

where

- G and H are finite groups with H acting on G by group automorphisms,
- k is a field of positive characteristic dividing the order of G,
- kH is the group algebra of H, k[G] is the dual of the group algebra of G.
- A is a non-cocommutative Hopf algebra.

Enlightening Example

Example

Let p be a prime number and n be a positive integer. Benson and Witherspoon analyzed the situation for $G:=(\mathbb{Z}/p\mathbb{Z})^n$, $H:=\mathbb{Z}/n\mathbb{Z}$ (with H cyclically permuting the factors of G) and k a field of characteristic p,

In this case, A admits a non-projective finite dimensional module M such that $M\otimes M$ is projective. In particular, if W is the cohomological support then

$$W(M \otimes M) \neq W(M) \cap W(M)$$
.

Classification and the Balmer Spectrum

Theorem (NVY19)

Let $A = (k[G] \# kH)^*$ where G and H are finite groups with H acting on G and k is a base field of positive characteristic dividing the order of G. Let $R = H^{\bullet}(A, k)$ and X = H-Proj(R). The following hold:

(a) There exists a bijection

$$\{\textit{thick tensor ideals of} \ \mathsf{stmod}(A)\} \ \stackrel{\Phi}{\underset{\Theta}{\longleftarrow}} \ \{\textit{specialization closed sets of } X\}$$

(b) There exists a homeomorphism $f: H\operatorname{-Proj}(R) \to \operatorname{Spc}(\operatorname{stmod}(A))$.

Tensor Product Question

Open Question: When does a support datum $\sigma: \mathbf{K} \to \mathcal{X}_{sp}(X)$ possesses the *tensor product property*

$$\sigma(M \otimes N) = \sigma(M) \cap \sigma(N), \quad \forall M, N \in K$$
?

Tensor Product Question

Open Question: When does a support datum $\sigma: \mathbf{K} \to \mathcal{X}_{sp}(X)$ possesses the *tensor product property*

$$\sigma(M \otimes N) = \sigma(M) \cap \sigma(N), \forall M, N \in K$$
?

- For cohomological supports for modular representations of finite groups (Carlson, Avrunin-Scott) and for finite group schemes (Friedlander-Pevtsova), it is known to hold.
- Many people have been interested in this question for arbitrary finite-dimensional Hopf algebras.

Connection with Completely Prime Ideals I

Theorem (NVY20)

For every monoidal triangulated category K, the following are equivalent:

(a) The universal support datum $V: \mathbf{K} \to \mathcal{X}(\operatorname{Spc} \mathbf{K})$ has the tensor product property

$$V(M \otimes N) = V(M) \cap V(N), \quad \forall M, N \in \mathbf{K}.$$

(b) Every prime ideal of K is completely prime.

Universal support datum: $V : \mathbf{K} \to \mathcal{X}: V(M) = \{ \mathbf{P} \in \mathsf{Spc} \, \mathbf{K} : M \notin \mathbf{P} \}.$

Connection with Completely Prime Ideals II

Theorem (NVY20)

Let K be a monoidal triangulated category in which every thick right ideal is two-sided. Then every prime ideal of K is completely prime, and as a consequence, the universal support datum $V: K \to \mathcal{X}(\operatorname{Spc} K)$ has the tensor product property

$$V(M \otimes N) = V(M) \cap V(N), \quad \forall M, N \in \mathbf{K}.$$

Connections with Nilpotent Elements

Theorem (NVY20)

Let \mathbf{K} be a monoidal triangulated category in which every object is rigid. If \mathbf{K} has a non-zero nilpotent object M (i.e., $M \not\cong 0$ but $M^{\otimes n} := M \otimes \cdots \otimes M \cong 0$, for some n > 0) then not all prime ideals of \mathbf{K} are completely prime. As a consequence, the universal support datum $V : \mathbf{K} \to \mathcal{X}(\operatorname{Spc} \mathbf{K})$ does not have the tensor product property.

Connections with Nilpotent Elements

Theorem (NVY20)

Let \mathbf{K} be a monoidal triangulated category in which every object is rigid. If \mathbf{K} has a non-zero nilpotent object M (i.e., $M \not\cong 0$ but $M^{\otimes n} := M \otimes \cdots \otimes M \cong 0$, for some n > 0) then not all prime ideals of \mathbf{K} are completely prime. As a consequence, the universal support datum $V : \mathbf{K} \to \mathcal{X}(\operatorname{Spc} \mathbf{K})$ does not have the tensor product property.

Recall for the Benson-Witherspoon example, there exists a non-zero module M (not projective) such that $M \otimes M = (0)$ in K. Therefore, the universal support datum does not satisfy the tensor product property. This implies that the cohomological (classifying) support datum does not satisfy the tensor product property.

Negron-Pevtsova Conjecture (2020)

Theorem (Nakano-Vashaw-Yakimov, 2020)

Let $u_{\zeta,\Gamma}(\mathfrak{b})$ be the small quantum group for the Borel subalgebra for an arbitrary finite dimensional complex simple Lie algebra. Assume that ℓ satisfies Assumptions on ℓ (in particular, $\ell > h$) and $\gcd(\ell, |\Gamma/\mathbb{Z}\Delta|) = 1$. Then the following hold:

- (a) All prime ideals of stmod($u_{\zeta,\Gamma}(\mathfrak{b})$) are completely prime.
- (b) The cohomological support

$$W(-): \mathsf{stmod}(u_{\zeta,\Gamma}(\mathfrak{b})) o \mathcal{X}_{sp}(\mathsf{Proj}(\mathsf{H}^{ullet}(u_{\zeta,\Gamma}(\mathfrak{b}),\mathbb{C}))$$

has the tensor product property $W(M \otimes N) = W(M) \cap W(N)$ for all $M, N \in \text{stmod}(u_{C,\Gamma}(\mathfrak{b}))$.

Thank you for your attention.