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“Categories Have Hidden Geometry”

�� ��Monoidal Triangulated Category

�� ��Zariski Space

PPPPPPPPPPPPPPPPPq

�� ��Support Data
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Monoidal Triangulated Categories

Definition

A monoidal triangulated category (M∆C) is a triple (K,⊗, 1) such that

(i) K is a triangulated category,

(ii) K has a monodial tensor product ⊗ : K×K→ K which is exact in
each variable with unit object 1.
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Examples:

Example

Let A be a finite-dimensional Hopf algebra. Then

(iii) Kc = stmod(A) stable module category of finite-dimensional modules
for A

(iv) K = StMod(A) stable module category for Mod(A).

Example

Let R be a commutative Noetherian ring. Let

(i) Kc = Db
perf (R) bounded derived category of finitely generated

projective R-modules

(ii) K = D(R) derived category of R-modules.

Then Kc and K are tensor triangulated categories.
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“Treat a M∆C Like a Ring”

Definition

(a) A (tensor) ideal in K is a triangulated subcategory I of K such that
M ⊗ N ∈ I and N ⊗M ∈ I for all M ∈ I and N ∈ K.

(b) An ideal I is thick if M1 ⊕M2 ∈ I then Mj ∈ I for j = 1, 2.

(c) A completely prime ideal P of K is a proper thick tensor ideal such
that if M ⊗ N ∈ P then either M ∈ P or N ∈ P.

(d) [NEW] A prime ideal P of K is a proper thick tensor ideal such that
I⊗ J ⊆ P implies that I ⊆ P or J ⊆ P for all thick ideals I, J of K. .
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A Generalization of Paul Balmer’s Categorical Spectrum

Definition

The Balmer spectrum is defined as

Spc(K) = {P ⊂ K | P is a prime ideal}.

The topology on Spc(K) is given by closed sets of the form

Z (C) = {P ∈ Spc(K) | C ∩ P = ∅}

where C is a family of objects in K.

One can also define

CP-Spc(K) = {P ⊂ K | P is a completely prime ideal}.

CP-Spc(K) ⊆ Spc(K).
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Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case
any closed set in X is the union of finitely many irreducible closed sets.
We say that X is a Zariski space if in addition any irreducible closed set Y
of X has a unique generic point (i.e., y ∈ Y such that Y = {y}).

Example

Let R is a commutative Noetherian ring.

(1) X = Spec(R).

(2) X = Proj(Spec(R)) := Proj(R) if R is graded.

(3) X = G -Proj(R) if R is graded and G is an algebraic group.
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Zariski Spaces: Notation

(ii) X be the collection of subsets of X .

(ii) Xcl be the collection of closed subsets of X .

(iii) Xirr be the set of irreducible closed sets.

(iv) A subset W in X is specialization closed if and only if W = ∪j∈JWj

where Wj are closed sets.

(v) Xsp be the collection of all specialization closed subsets of X .
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Support Data

Definition

A support data (resp. weak support data) is an assignment σ : K→ X which
satisfies the following six properties (for M,Mi ,N,Q ∈ K):

(S1) σ(0) = ∅, σ(1) = X ;

(S2) σ(⊕i∈IMi ) =
⋃

i∈I σ(Mi ) whenever ⊕i∈IMi is an object of K;

(S3) σ(ΣM) = σ(M);

(S4) for any distinguished triangle M → N → Q → ΣM we have

σ(N) ⊆ σ(M) ∪ σ(Q);

(S5)
⋃

C∈K σ(M ⊗ C ⊗ N) = σ(M) ∩ σ(N);

(WS5) Φσ(I⊗ J) = Φσ(I) ∩ Φσ(J), I and J are ideals of K: Φσ(I) = ∪A∈Iσ(A).

(S6) σ(M) = σ(M∗) for M ∈ Kc [the compact objects have a duality].
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We will be interested in support data which satisfy an additional two
properties:

(S7) σ(M) = ∅ if and only if M = 0; (Faithfulness Property)

(S8) for any W ∈ Xcl there exists an M ∈ Kc such that σ(M) = W
(Realization Property).
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Classifying Thick Tensor Ideals and the Balmer Spectrum

Theorem (BKN16, Dell’Ambrogio, NVY19)

Let K be a compactly generated M∆C. Let X be a Zariski space and let
σ : K→ X be a weak support data satisfying the additional conditions (S7) and
(S8) with σ(〈M〉) ∈ Xcl for M ∈ Kc . There is a pair of mutually inverse maps

{thick tensor ideals of Kc}
Φσ

−→←−
Θ

Xsp,

given by

Φσ(I) =
⋃
M∈I

σ(M), Θ(W ) = IW ,

where IW = {M ∈ Kc | σ(M) ⊆W }. Moreover, there is a homeomorphism

f : X → Spc(Kc).
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Recap

�� ��Monoidal Triangulated Category

�� ��Zariski Space

PPPPPPPPPPPPPPPPPq

�� ��Support Data
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Finite Group Schemes [Symmetric M∆C]

Example

Let G be a finite group (scheme), A := H•(G , k) = Ext•G (k , k) be the
cohomology ring. Set Kc = stmod(G ) and X = Proj(Spec(A)).

(i) {thick ⊗-ideals of Kc} are in one-to-correspondence with Xsp.

(ii) Spc(Kc) ∼= Proj(Spec(A)).

The (classifying) support data is given by

W (M) = {P ∈ Proj(Spec(A)) : Ext•G (M,M)P 6= 0}.
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Perfect Complexes [Symmetric M∆C]

Example

Let R be a commutative Noetherian ring, Kc = Db
perf (R) and

X = Spec(R). Then

(i) {thick ⊗-ideals of Kc} are in one-to-correspondence with Xsp.

(ii) Spc(Kc) ∼= Spec(R).

The support data which gives this classification is

W (C•) = {P ∈ Spec(R) : H∗(C•)P 6= 0}.
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Large Quantum Group [Symmetric M∆C]

Theorem (BKN17)

Let G be a complex simple algebraic group over C with g = LieG.
Assume that ζ is a primitive `th root of unity where ` > h. Let
K = Stmod(Uζ(g)), Kc = stmod(Uζ(g)) and X = G- Proj(C[N ]). There
exists a 1-1 correspondence

{thick tensor ideals of Kc}
Γ
−→←−
Θ

Xsp.

Moreover, there is a homeomorphism

Spc(stmod(Uζ(g))) ∼= G- Proj(C[N ]).
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Finite-dimensional Hopf-algebras [General M∆C]

Theorem (NVY19)

(a) Let K be a compactly generated M∆C and σ : K→ X be a quasi support
datum for a Zariski space X that satisfies the faithfulness and realization
properties and the Assumption YY. Then the map

Φσ : {thick right ideals of Kc} → Xsp

is a bijection.

(b) Let A be a finite-dimensional Hopf algebra over a field k that satisfies the
standard (Finite Generation) Assumption and the Assumption YY. Set
X = Proj(H•(A, k)). The standard cohomological support
σ : stmod(A)→ Xcl is a quasi support datum, and as a consequence, there
is a bijection

Φσ : {thick right ideals of stmod(A)} → Xsp,

where stmod(A) is the stable (finite dimensional) module category of A.
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Quantum Groups [Non-commutative M∆C]

Assumptions

Let ∆ be an irreducible root system, and ζ ∈ C be a primitive `th root of
unity.

The integer ` is odd and greater than 1.

If the root system Φ has type G2, then 3 does not divide `.

` > h where h is the Coxeter number for ∆.
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Quantum Groups for Borel Subalgebras

∆+ be the positive roots of an irreducible root system ∆.

X be the weight lattice

Γ a Z-lattice with Z∆ ⊆ Γ ⊆ X

{µ1, . . . , µn} a Z-basis for Γ

Construct uζ,Γ(b) = uζ(u)#uζ,Γ(t) as follows.

uζ(u) is the small quantum group for nilpotent radical of the Borel.

uζ,Γ(t) = C[K±1
µ1
, . . . ,K±1

µn ]/(K `
µi
− 1, 1 ≤ i ≤ n)

KµiEβK
−1
µi

= ζ〈β,µi 〉Eβ.

The (non-cocommutative) coproduct on uζ(u) is the standard one
used for quantum groups. .
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Classification of Thick Tensor Ideals

Theorem (NVY19, NVY20)

Let uζ,Γ(b) be the small quantum group for the Borel subalgebra for an arbitrary
finite dimensional complex simple Lie algebra. Assume that ` satisfies the
Assumptions (in particular, ` > h) and gcd(`, |Γ/Z∆|) = 1, which implies that
R ∼= S(u∗), X = Proj(R).

(a) For Φ and Θ as above, there exists a bijection between

{thick tensor ideals of stmod(uζ,Γ(b))}
ΦW

−→←−
Θ

{specialization closed sets of X}.

(b) Every thick right ideal of stmod(uζ,Γ(b)) is two-sided.

(c) There exists a homeomorphism f : Proj(R)→ Spc(stmod(uζ,Γ(b))).
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Methods Used in the Proof

We define the notion of quasi support data whose axioms involve a weaker
form of the tensor product condition.

To obtain an analogue of a result of Hopkins, a key assumption (Assumption
YY) is identified that involves the projectivity of infinitely generated
modules.

The next step is to pass to a designated associated graded algebra,
gr uζ.Γ(b), for uζ,Γ(b). It is in this category that we prove a version of the
tensor product theorem.

A key ingredient involves the work of Benson, Erdmann, and Holloway to
relate supports of modules in gr uζ,Γ(b) to supports for a quantum complete
intersection (with equal parameters) where the theory is better understood
via rank varieties.

By carefully keeping track of the relationship between the support theories
between uζ,Γ(b) and gr uζ,Γ(b) we can successfully verify the key
assumption. Much of our analysis uses key facts in the local support theory
as developed by Benson, Iyengar, and Krause.
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Benson-Witherspoon Hopf Algebras [Non-cocommutative
M∆C]

Benson and Witherspoon considered the stable module categories of Hopf
algebras of the form

A := (k[G ]#kH)∗,

where

G and H are finite groups with H acting on G by group
automorphisms,

k is a field of positive characteristic dividing the order of G ,

kH is the group algebra of H, k[G ] is the dual of the group algebra of
G ,

A is a non-cocommutative Hopf algebra.
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Enlightening Example

Example

Let p be a prime number and n be a positive integer. Benson and
Witherspoon analyzed the situation for G := (Z/pZ)n, H := Z/nZ (with
H cyclically permuting the factors of G ) and k a field of characteristic p,

In this case, A admits a non-projective finite dimensional module M such
that M ⊗M is projective. In particular, if W is the cohomological support
then

W (M ⊗M) 6= W (M) ∩W (M).
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Classification and the Balmer Spectrum

Theorem (NVY19)

Let A = (k[G ]#kH)∗ where G and H are finite groups with H acting on G and k
is a base field of positive characteristic dividing the order of G. Let R = H•(A, k)
and X = H-Proj(R). The following hold:

(a) There exists a bijection

{thick tensor ideals of stmod(A)}
Φ
−→←−
Θ

{specialization closed sets of X}

(b) There exists a homeomorphism f : H-Proj(R)→ Spc(stmod(A)).
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Tensor Product Question

Open Question: When does a support datum σ : K→ Xsp(X ) possesses
the tensor product property

σ(M ⊗ N) = σ(M) ∩ σ(N), ∀M,N ∈ K?

For cohomological supports for modular representations of finite
groups (Carlson, Avrunin-Scott) and for finite group schemes
(Friedlander-Pevtsova), it is known to hold.

Many people have been interested in this question for arbitrary
finite-dimensional Hopf algebras.
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Connection with Completely Prime Ideals I

Theorem (NVY20)

For every monoidal triangulated category K, the following are equivalent:

(a) The universal support datum V : K→ X (SpcK) has the tensor
product property

V (M ⊗ N) = V (M) ∩ V (N), ∀M,N ∈ K.

(b) Every prime ideal of K is completely prime.

Universal support datum: V : K→ X : V (M) = {P ∈ SpcK : M /∈ P}.
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Connection with Completely Prime Ideals II

Theorem (NVY20)

Let K be a monoidal triangulated category in which every thick right ideal
is two-sided. Then every prime ideal of K is completely prime, and as a
consequence, the universal support datum V : K→ X (SpcK) has the
tensor product property

V (M ⊗ N) = V (M) ∩ V (N), ∀M,N ∈ K.
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Connections with Nilpotent Elements

Theorem (NVY20)

Let K be a monoidal triangulated category in which every object is rigid. If
K has a non-zero nilpotent object M (i.e., M 6∼= 0 but
M⊗n := M ⊗ · · · ⊗M ∼= 0, for some n > 0) then not all prime ideals of K
are completely prime. As a consequence, the universal support datum
V : K→ X (SpcK) does not have the tensor product property.

Recall for the Benson-Witherspoon example, there exists a non-zero
module M (not projective) such that M ⊗M = (0) in K. Therefore, the
universal support datum does not satisfy the tensor product property. This
implies that the cohomological (classifying) support datum does not
satisfy the tensor product property.
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Negron-Pevtsova Conjecture (2020)

Theorem (Nakano-Vashaw-Yakimov, 2020)

Let uζ,Γ(b) be the small quantum group for the Borel subalgebra for an
arbitrary finite dimensional complex simple Lie algebra. Assume that `
satisfies Assumptions on ` (in particular, ` > h) and gcd(`, |Γ/Z∆|) = 1.
Then the following hold:

(a) All prime ideals of stmod(uζ,Γ(b)) are completely prime.

(b) The cohomological support

W (−) : stmod(uζ,Γ(b))→ Xsp(Proj(H•(uζ,Γ(b),C))

has the tensor product property W (M ⊗ N) = W (M) ∩W (N) for all
M,N ∈ stmod(uζ,Γ(b)).
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Thank you for your attention.
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